본문 바로가기

수학29

어떻게 나눌까? 등산객 3명이 우연히 산꼭대기에서 만났다. 점심때가 되어 C가 말했다. "식사 시간이 되었는데 난 먹을 것을 안 가져왔소. 돈만 가져와 어디서 사 먹으려고 했는데 이 산꼭대기에서 사 먹을 곳이 없군요. 그러니 두 분께서 좀 도와주시죠?" "그러죠. 집을 나서면 다 친구인데." A와 B가 흔쾌히 대답했다. A는 빵을 5개 가져왔고, B는 빵을 3개 가져왔다. 세 사람은 그 빵을 골고루 나누어 먹었다. 식사를 마치고 나서 C는 고맙다며 A와 B에게 8원을 내놓았다. 당연히 A가 5원을 호주머니에 넣었고 나머지 3원은 B가 챙겼다. 여러분은 이렇게 나누어 가지는 것이 과연 합당하다고 생각하는가? 더보기 꼼꼼이 따져보면 이렇게 나누는 방법이 합리적이지 않음을 알 수 있다. 세 사람이 빵 8개를 나누어 먹었으므로.. 2021. 11. 12.
'수학하는 사람'의 YouTube 채널을 추천합니다. '수학하는 사람' forgodot의 YouTube 채널 "idomath"입니다. 지식의 불평등을 해소하고 우수한 강의와 콘텐츠를 제공하여 올바른 수학을 가르치기 위해 노력합니다. 교사, 연구원, 강사, 대우교수의 삶을 살면서 경험하고 축적한 지식을 전하는 유튜브 채널입니다. 2000년 모뎀을 이용하던 시절 통신요금, 서버 요금이 과다해서 포기하고 기다리다 새로운 시대에 멋진 공간을 만나게 되어 다시 시작합니다. 수리논술 / 심층면접 대비 / 해석학 · 선형대수학 · 미적분학 · 정수론 / 과학고·영재고 입시 대비 "현재의 수학자가 내일의 과학자를 가르칩니다." 채널 구독 후, 알림을 설정해주시면, 영상이 올라올 때마다 알림을 받으실 수 있으시니, 꼭꼭!! 구독과 알림 부탁드려요. ♥ 문의는 이메일로 보내.. 2021. 10. 24.
적분의 실생활 활용 [3D 프린터] 일반적으로 프린터는 컴퓨터에 나타난 글자나 그림을 종이에 그리는 기계를 의미한다. 그런데 이제는 컴퓨터에 나타난 3차원 설계도를 3D 프린터로 구현할 수 있다. 3D 프린터는 1984년 미국의 3D 시스템즈사가 플라스틱 액체를 굳혀 물건을 만드는 프린터를 세계 최초로 개발하면서 그 역사가 시작됐다. 최근 3D 프린팅 기술의 특허가 만료되면서 누구나 쉽게 기술을 사용할 수 있게 되었기 때문에 연구가 활발히 진행되자 사람들의 관심을 끄는 연구도 나오게 된 것이다. 3D 프린터로 만든 제품을 만져보면 겉표면이 거칠거칠하다. 한 층씩 쌓아 올리는 방식으로 만들어서 그렇다. 3차원 제품을 가로축을 기준으로 2차원 평면이 되도록 잘게 쪼갠 다음, 아래에서부터 한 층 한 층 쌓아 올린 것이다. 이런 .. 2020. 8. 28.
미분의 발명과 분쟁 1675년에 독일의 저명한 철학자이자 수학자인 라이프니츠는 『분수에도, 무리수에도, 장애 없이 적용할 수 있는, 극대와 극소, 또한 접선에 대한 새로운 방법, 그리고 그것을 위한 특이한 계산법』이라는 긴 제목의 수학 논문을 발표하였는데, 이것이 미분학의 발명을 둘러싼 논쟁의 시발점이 되었다. 라이프니츠가 이 논문을 발표하기 10년 전, 이미 미분을 아이작 뉴턴이 알고 있었다. 뉴턴은 타원이 회전할 때 순간의 속도를 유율이라 정의하였는데 이것이 미분의 개념이다. 그는 이러한 개념을 동료의 권유로 책으로 출판하려 했지만 조금 미루다 결국 라이프니츠가 먼저 미분을 발표하게 된 것이다. 영국의 수학자들은 뉴턴이 미분의 창시자라고 생각했지만, 라이프니츠의 추종자들은 뉴턴이 그의 이론을 표절한 것이라 생각했다. 그.. 2020. 8. 25.
생활 속의 미분 활용 [무인 단속 카메라] 고정식 무인카메라는 일종의 감지선으로 카메라 전방 20~30m 앞에 사각형으로 그려져 있는 루프 방식이다. 도로에 속도를 읽는 센서를 내장한 두 줄의 루프를 깔고, 그 사이를 지나는 차의 '시간'을 측정해 '속력'으로 환산하는 것이다. '속력=거리÷시간'이라는 공식에 따라 센서값의 평균변화율을 계산하여 과속이 인지되면 곧바로 카메라 플래시가 번쩍 터지면서 사진을 찍게 되는 원리로 되어 있다. [애니메이션] 물의 움직임을 나타내는 시뮬레이션은 유체역학 이론을 기초로 한다. 공기나 물의 흐름을 설명할 수 있는 미분방정식의 일종인 '나비에-스토크스 방정식'이 설계의 기본이다. '나비에-스토크스 방정식'은 백만 달러의 상금이 걸려 있는 세계 7대 수학 난제 중 하나이다. 아직 방정식의 해를.. 2020. 8. 24.
극한의 엄밀한 정의 미적분을 공부하다 보면 코시라는 수학자의 이름을 자주 듣게 된다. 특히 '코시-슈바르츠의 부등식'을 알고 있는 사람이면 코시라는 수학자의 이름을 이미 들어 봤을 것이다. 그는 수학과 물리학에 업적이 많다. 특히 극한이라는 개념의 엄밀한 정의를 만드는데 기초를 마련한 사람이다. 또한 과학아카데미에서 논문의 분량을 4페이지로 제한한 이유가 코시의 논문 양이 매우 많아서였기 때문이었다고 하는 웃지 못할 일화의 주인공이기도 하다. 코시는 프랑스 혁명 시기에 파리에서 태어났다. 정치적 혼란으로 인해 자주 이사를 했기 때문에 아버지에게 교육을 받았다. 그런데 당대 최고의 수학자인 라플라스와 라그랑주에게 재능을 인정받아 그들은 그에게 수학 공부를 권유하게 되었다. 1805년에 에콜 폴리테크니크에 입학하여 공학을 전공.. 2020. 8. 23.
테셀레이션의 아버지 Escher M.C. Escher는 네덜란드 출신의 판화가이다. 그의 작품들은 동일한 모양을 이용해 틈이나 포개짐 없이 평면이나 공간을 완전하게 덮는 '테셀레이션(Tessellation)'이라는 독특한 분야에 일가견이 있는 사람이었다. 단순한 기하학적 무늬에서 수학적 변환을 통한 반사, 미끄럼 반사, 평행이동, 회전의 기법을 이용해 정삼각형, 정사각형, 정육각형을 변형하여 동물, 새, 도마뱀, 개, 나비, 사람 등의 여러 형태로 변형시켰다. 그의 작품 가운데 『원형극한Ⅲ』은 테셀레이션의 기법을 이용하여 반복되는 그림의 극한을 잘 보여주고 있다. 그리고 『뫼비우스의 띠Ⅱ』에서 안과 밖이 구별되지 않는 뫼비우스의 띠를 무한히 반복되는 개미들의 행진으로 보여주고 있다. 그는 폴리아라는 수학자가 스케치한 17개의 벽지 디자.. 2020. 8. 21.
톨스토이 문제 러시아의 대문호 톨스토이는 어려운 문제를 즐겨서 풀었지만 늘 교묘한 방법으로 풀어서 주위를 깜짝 놀라게 했다. 다음은 그가 낸 문제이다. 농부들이 밭 두 뙈기의 풀을 베려고 한다. 그 중 한 풀밭은 다른 풀밭의 넓이의 2배라고 한다. 농부들은 큰 풀밭에서 반나절 동안 풀을 벤 다음, 두 조로 나누어 절반은 계속 큰 풀밭에서 풀을 베고 나머지 절반은 작은 풀밭에서 풀을 벤다고 한다. 저녁 무렵에 큰 풀밭의 풀은 다 벴는데 작은 풀밭은 아직도 풀이 남아 있었다. 이튿날 어제 벴던 농부 중 한 사람을 다시 보내서 작은 풀밭을 베게 했는데 하루가 걸렸다. 풀을 벤 농부의 수는 모두 몇 명이었나? 농부들의 풀을 베는 능력은 같은 것으로 하자. 톨스토이는 그림을 그려가면서 농부의 수를 구했다. 전체 농부들이 반나절.. 2020. 8. 8.
GPS와 삼각함수 위성에서 보내는 신호를 수신해 사용자의 현재 위치를 알려주는 시스템인 GPS(Global Positioning System)는 1970년대 폭격의 정확성을 높이기 위해 미국 국방성에서 최초로 개발한 것이다. 실제로는 인공위성이 알려주는 건 장소가 아니라 인공위성 자신의 위치와 현재 시간이다. GPS 수신기는 어떻게 자신의 위치를 알게 될까? GPS 수신기를 이용하여 자신의 위치를 알 수 있게 하는 원리 속에는 삼각함수의 개념이 들어가 있다. 흔히 인공위성이 자신의 위치를 GPS 수신기에 가르쳐 준다고 알고 있다. 하지만 인공위성은 각자의 위치를 가르쳐 줄 수 있는 것이 아니라 인공위성 자신의 위치와 시간을 GPS 수신기에 가르쳐 주고 있는 것이다. 정확히 GPS의 원리는 위성과의 거리를 측정하는 데 있다.. 2020. 8. 7.
생활 속 지수와 로그 [반감기] 2011년 일본 후쿠시마에서는 지진해일로 원전이 부서져 많은 오염수와 방사능의 누출이 있었다. 원자로의 핵연료로 사용하는 우라늄(U-235)이 붕괴하면 플루토늄, 세슘, 스트론튬, 아이오딘, 삼중수소 등의 방사성 원소들이 만들어진다. 이 방사성 원소들에게는 반감기가 있다. 반감기란 방사성 원소가 반으로 붕괴되는 시간을 나타낸다. 그런데 방사성 원소가 반으로 줄어드는데 시간이 일정하다는 특성이 있다. 예를 들어 100g의 방사성 원소가 50g으로 줄어드는데 4시간이 걸렸다면 50g에서 25g으로 줄어드는 데도 4시간이 걸린다. 다시 25g이 12.5g으로 줄어드는 시간도 4시간이다. 이렇게 절반으로 줄어드는데 걸리는 시간이 일정한 경우를 '지수함수적 붕괴'라고 한다. [베버-페히너의 법칙] 독일.. 2020. 8. 7.
생활 속에 숨어 있는 함수 1. 무더운 여름철 방송에서 "오늘은 불쾌지수가 77 정도로 약 50%의 사람들이 짜증스러움을 느끼므로, 조금만 감정을 다스려 편안한 하루를 보내시길 바랍니다."라고 보도하는 것을 듣는다. 다음은 불쾌지수에 따라 불편함을 느끼는 사람들의 비율이다. 68 미만 : 0% 68~75 : 10% 75~80 : 50% 80~86 : 90% 86 이상 : 100% 불쾌지수란 온도와 습도에 관한 함수이다. 불쾌지수 계산은 다음과 같이 구한다. 건습계의 건구 온도계와 습구 온도계가 나타내는 온도를 각각 K, S라고 하면, 불쾌지수(u)는 u=(K+S)×0.72+40.6 으로 정의된다. 2. 간식 값 내기, 벌칙 정하기, 데이트 상대 정하기 등을 할 때, 자주 이용되는 것이 사다리타기 게임이다. 사다리타기 게임에서 어떤.. 2020. 8. 3.
페르마의 마지막정리 다음의 정리를 『페르마(Fermat)의 대정리』 혹은 『Fermat의 마지막정리』라고 한다. 페르마는 직업적인 수학자가 아니라, 툴르즈 지방 의회에 소속된 법률가이자 치안 판사였다. 그는 수학에 대한 정규 교육을 받은 적도 없었지만, 수학에 강렬한 애착을 갖게 되었다. 그는 자신의 생존 기간 중 수학에 대해 사실상 아무 것도 출판하지 않았다. 그러나 그는 당시의 위대한 수학자들과 매우 많은 서신 왕래를 하였다. 이 유명한 마지막정리의 형식화에 이르는 과정은 매우 흥미롭다. 1453년 콘스탄티노플이 터키에 의해 함락되었을 때 비잔틴 학자들은 고대 그리스 문헌을 갖고 서유럽으로 피신했다. 그 중에는 당시까지 보관되던 디오판토스의 산학(arithemetica)이 있었다. 이 책은 후에 1621년 중 그리스 문.. 2020. 7. 16.
세상의 모든 공식 - 존 M. 헨쇼 ◆ 세상에는 오로지 10가지 인간이 존재할 뿐이다. 이진법을 아는 인간과 그렇지 못한 인간. ◆ π와 관련된 경쟁은 또 있다. 이 경쟁은 더 오싹하다. 여기에는 귀와 귀 사이의 피와 살로 된 컴퓨터가 동원된다. 바로 π값 외우기 경쟁이다. 기록이 꾸준히 갱신된 끝에, 현재 기록보유자는 6만 7,890자릿수까지 외워서 기네스북에 오른 어떤 중국인이다. 이 사람은 총 24시간 4분에 걸쳐서, 숫자 하나당 1.28초의 속도로, π를 6만 7,890자리까지 한 번도 틀리지 않고 암송했다. ◆ 수학자 겸 작가 데이비드 웰스(David Wells)가 수학공식의 아름다움을 평가하는 나름의 판단기준을 제시했다. 웰스에 따르면, 아름다운 수학공식의 조건은 단순함, 간결함, 중요성, 놀라움이다. 오일러 항등식(Euler'.. 2019. 11. 5.
동전 옮기기 게임 그림과 같이 인접한 여덟 개의 정사각형으로 이루어진 판을 가지고 게임을 한다. 처음에 세 개의 동전이 그림과 같이 놓여 있다. 규칙은 한 개의 동전을 왼쪽으로 한 칸씩 옮기는 것이다. 각각의 동전은 다른 동전의 위 또는 아래에 겹칠 수 있다. 목표는 모든 동전을 가장 왼쪽 끝으로 옮기는 것이다. 마지막으로 동전을 옮기는 사람이 이긴다고 할 때, 먼저 시작하는 사람이 이 게임에서 이기기 위한 전략은 무엇인가? 더보기 동전은 단지 왼쪽으로만 옮길 수 있고 오른쪽으로 결코 옮기지 못함을 주목하자. 왼쪽에 있는 동전부터 차례로 1번, 2번, 3번이라 하자. 게임을 한 번 할 때마다 1번 동전은 모두 세 번 움직여서 가장 왼쪽의 칸에 옮길 수 있다. 2번 동전은 모두 다섯 번 움직여서 가장 왼쪽의 칸에 옮길 수 .. 2014. 8. 16.
칩 가져가기 두 사람이 게임을 하고 있다. 이들은 칩 30개를 쌓아놓고 한 번에 1~6개의 칩을 가져갈 수 있다. 마지막 칩을 가져가는 사람이 게임에서 이긴다고 할 때, 먼저 시작한 사람이 항상 이길 수 있는 전략은 무엇일까? 더보기 먼저 가져가는 사람을 A, 두 번째로 가져가는 사람을 B라 하자. A가 확실히 이 게임에서 이길 수 있는 전략을 생각한다. 아이디어는 거꾸로 이 게임을 진행해 보는 것이다. 분명히 A는 마지막 자신의 차례에서 6개 이하의 칩이 남아 있기를 원한다. 그러면 남아 있는 칩들을 모두 가져오면서 게임에서 이길 수 있기 때문이다. 따라서 이보다 앞선 B의 차례에서는, B가 가져간 후에 A가 6개 이하의 칩을 가져갈 수 있는 만큼의 칩이 남아야만 한다. 가령 B의 차례에서 8개의 칩이 남아 있다고.. 2014. 8. 16.
결혼 문제 한 청년이 성년이 되었다. 그의 목표는 결혼하는 것이었다. 신부감을 찾기 위해 최대 100명의 여자와 데이트를 하기로 결심하였다. 여자와 잠시 데이트를 한 후, 그녀와 결혼을 하든지 그녀를 거절하고 계속해서 다른 여자를 만나보아야 했다. 일단 한 여자를 거절하면 다시는 그 여자를 만날 수 없다. 결국 오직 한 여자만을 선택하여 결혼해야 한다. 이 문제에서 흥미로운 점은 이 청년이 이미 만났던 여자에 대해서는 뒤돌아 볼 수 없지만 앞으로 만날 여자에 대해서는 미리 볼 수 없다는 것이다. 언제든지 청년은 "지금 만나고 있는 여자는 더욱 매력적이야, 그리고 이전에 만났던 어느 여자보다도 나에게 어울리는 것 같아"라 말하면서 그녀와 결혼할 것을 결정할 수 있다. 하지만 청년은 "이 여자는 멋있어. 하지만 더욱 .. 2014. 8. 11.
37장의 편지 37장의 편지를 쓴 다음 37장의 봉투에 주소를 적는다고 가정하자. 눈을 감고 무작위로 편지를 각각의 봉투에 하나씩 집어넣을 때, 단 한 장의 봉투에만 편지가 잘못 들어갈 확률은 얼마인가? 더보기 각각의 편지와 봉투에 1~37까지의 번호가 매겨져 있다고 하자. 1~36번까지의 편지가 봉투에 제대로 들어가 있다면, 남아 있는 것은 37번 편지와 37번 봉투일 것이다. 따라서 마지막에 남은 편지는 봉투에 제대로 들어갈 수밖에 없다. 물론 여기서 사용된 번호 매김에는 특별한 것이 없다. 이는 단지 단 한 장의 편지만이 봉투에 잘못 들어가는 것은 불가능하다는 아주 간단한 사실만을 알려줄 뿐이다. 한 장의 편지가 봉투에 잘못 들어 있다면, 적어도 두 장의 편지는 봉투에 잘못 들어가는 것이 된다. 따라서 구하는 확.. 2014. 8. 6.
여섯 명 중 세 사람 방 안에 여섯 명이 있다고 하자. 이들 중 세 사람은 서로 알고 있거나, 아니면 서로 모르는 경우가 있는데 그 이유를 설명하라. 물론 A가 B를 알고 있다면 B도 역시 A를 알고 있는 것으로 가정한다. 더보기 이들 중 한 사람을 조라고 하자. 조는 나머지 다섯 명 중에서 세 명을 알고 있든지, 아니면 세 명을 전혀 모르든지 둘 중의 하나이다. 첫 번째의 경우를 생각해 보자. 가령 조가 실제로 해리, 메리, 래리를 알고 있다고 가정하자. 이들 중 어느 두 사람이 서로 알고 있다면(예를 들면, 해리가 래리를 알고 있다), {조, 해리, 래리}는 서로 알고 있는 사이가 된다. 대신에 어떤 두 사람도 서로 모르는 사이라면 {해리, 메리, 래리}는 서로를 모르는 사람들이다. 위의 문제는 다음과 같이 재해석할 수 .. 2014. 8. 6.
7×9=? 어느 대(大) 수학자가 어린 학생들 앞에서 수학에 대해 강의를 하다가 7에다 9를 곱할 일이 생겼다. 그러나 갑자기 7×9가 생각나지 않아 학생들에게 값이 얼마냐고 물었다. 그러자 한 학생이 장난삼아 ‘61’이라고 대답하자 그는 ‘61’이라고 칠판에 적었다. 그러자 다른 학생이 놀린다고 ‘아녀요 69예요’라고 하자 그 수학자는 "답이 어떻게 두 개가 될 수 있느냐"면서 생각에 잠기더니 혼자 중얼거렸다. ‘7곱하기 10은 70이니 70보다는 작을 것이나 61과 67은 소수이니까 답이 될 수가 없고, 홀수 곱하기 홀수는 홀수이므로 62, 64, 66, 68도 아니고, 65는 5의 배수이므로 답이 아니고, 69는 너무 크므로 답이 아니고, 63만 남으니 63이 답이야’ 라면서 칠판의 숫자를 정정했다. 2014. 5. 26.
유연한 사고 기르기 1000에서 743을 빼면? 999에서 743을 빼고 1을 더하는게 빠르다. 고정된 사고를 벗어나자, 사고는 유연하게. 2014. 5. 26.
That's Real Life 2013. 12. 17.