본문 바로가기

분류전체보기629

신기한 착시현상 #01 평행선들을 일정한 간격으로 그은 후 색깔을 서로 교대하여 칠해가면 평행선들이 삐뚤삐뚤해 보인다. 빨간색 평행선들이 비뚤어 보인다. 격자 모양이 되게 일정한 폭을 갖는 검은 선분을 그려보자. 가로 선과 세로 선의 교차점에 회색의 점들이 움직이듯이 보였다 사라졌다하는 것이 보인다. 선분들이 만들어 낸 마술이다. 빨간 두 개의 선분이 볼록하게 휘어져 보인다. 일정한 폭을 갖는 선분들을 일정한 간격을 두고 배열해 보자. 선분의 교차점에 원들이 있는 것처럼 보인다. 하지만 실제로 원은 존재하지 않는다. 2011. 5. 11.
놀이터에서 저희 아파트 바로 뒷편으로는 산책로와 놀이터, 횡단보도 하나만 건너면 공원이 있습니다. 화물차들이 쌩쌩 달리는 삭막한 공단 지역이지만 가끔 천천히 산책을 하다 보면 그래도 마음의 평화가 찾아옵니다. 이 나무는 안테나가 달려 있습니다. 더듬이일까요? 도대체 어떤 신호를 수신하려고 저렇게 생겼을까요??? 저 녀석은 분명 벌을 아닌 것 같은데 뭔지 모르겠네요.. 마지막 사진은 딸 아이가 친구에게 선물로 받은건데 여자 아이에게는 어울리지 않는다고 쿨하게 남동생에게 넘긴, 스파이더맨이 튀어오를 듯한 필통 되겠습니다.^^ 2011. 5. 9.
옥구공원 나들이 어린이날 아이들을 데리고 멀리 가기도 놀이동산에 가기도 너무 부담스러운 것이 사실입니다. 차라리 평일에 하루쯤 시간을 내어 여행을 가기로 아이들을 설득하고 친구들과 친구 부모님들까지 함께 집 근처 공원으로 조촐하게 소풍을 다녀왔습니다. 사실, 아이들보다는 어른들이 신난 하루였습니다.^^; 2011. 5. 9.
까다로운 수학자들 수학자들이란 엄밀한 증명 없이는 어떠한 사실도 받아들이지 않는 지독히 까다로운 사람들이다. 아이언 스튜어트(Ian Stewart)의 저서 '현대수학의 개념'에는 수학자들의 이러한 성향이 다음과 같이 재미있게 묘사되어 있다. 천문학자와 물리학자, 그리고 수학자가 스코틀랜드에서 휴가를 보내고 있던 중 들판에서 풀을 뜯고 있는 양 한 마리를 보았다. 천문학자가 말하기를 "그것 참 신기하군. 스코틀랜드 양들은 죄다 검은색이잖아?" 이 말을 듣고 있던 물리학자가 천문학자의 말을 반박하여 "그게 아니야, 스코틀랜드산 양들 중에서 일부만이 검은색이라고 말해야지." 이들의 말이 한심하다는 듯, 수학자는 하늘을 잠시 쳐다본 뒤 "자네들은 너무 성급한 판단을 내린거야. 스코틀랜드에는 적어도 몸의 한쪽 면 이상의 면적에 검.. 2011. 5. 2.
피타고라스 학파의 규율 1. 콩을 먹어서는 안된다. 2. 떨어진 물건은 주워 올리지 말라. 3. 흰 수놈 새에게 손을 대지 말라. 4. 빵을 뜯지 말라. 5. 빗장 쇠를 타고 넘지 말라. 6. 쇠꼬챙이로 불을 일으키지 말라. 7. 통째로 음식을 먹지 말라. 8. 꽃 장식을 들지 말라. 9. 말 위에 앉지 말라. 10. 마음을 졸이지 말라. 11. 큰 길을 걷지 말라. 12. 제비에게 집의 처마를 빌려 주지 말라. 13. 단지에서 불을 꺼낼 때 재에 형태를 남기지 말라. 14. 불 옆에서 거울을 보지 말라. 15. 침대에서 일어날 때는 몸의 자국이 남지 않도록 시트를 펴라. 위에 적은 15가지는 피타고라스 학파의 규율이다. 그들은 콩을 계산도구로 사용하였다고 한다. 계산기로도 힘든 계산을 콩으로 하는 그들은 역시 천재였다. 그렇.. 2011. 5. 2.
개와 사람의 나이 비교 개와 사람의 나이를 비교하는 간단한 방법이 있다. 사람의 나이를 h, 개의 나이를 d라 할 때, 1년 이상 된 개의 경우 d×5 + 13 = h 라는 공식(일차함수)을 적용하면 비교적 정확하게 산출할 수 있다고 한다. 1년 된 강아지(1×5 + 13 = 18)는 육체적으로나 정신적으로 거의 성년이 되며, 성적으로도 완전히 성숙돼 번식 활동이 가능하다. 사람의 나이로 치면 18살 정도의 성숙도를 나타낸다. 이후 왕성한 활동을 하다가 7~8살(7×5 + 13 = 48 ~ 8×5 + 13 = 53)이 되면 체력이 저하되고 종견으로서의 능력도 반감되는데 사람의 나이로 보면 48~53살 정도의 체력과 동력을 갖는다. 10살(10×5 + 13 = 63)이 되면 노령기에 접어들어 사람을 위해 봉사하던 맹인안내견 등 .. 2011. 5. 2.
광기가 천재를 만든다. 당신이 '우리 나라 최고 명문대학의 입학시험 시험관'이라는 입장에서 다음과 같은 학생에 대해 구술시험을 치르고 있다. 평가해 보아라. …방금 들어온 학생은 자그마한 몸집과 가느스름한 얼굴에 반짝이는 눈빛을 가지고 있었다. 다른 학생과 마찬가지로 그는 의자에 앉았으며 약간 긴장한 모습이었다. 미리 제출된 교사들의 평가서에는 다음과 같이 여러 가지 의견이 적혀있었다. "대단히 점잖고 순진함이 넘치고 좋은 자질을 가지고 있다. 그러나 이 학생에게는 뭔가 기묘한 데가 있다." "성질은 나쁘지 않으나 독창적이고 색다른 데가 있으며 논의를 좋아한다. 다만 가끔씩 친구들을 놀리는 버릇이 있다." "색다른 행동 때문에 친구들에게 따돌림 받고있고 야심과 독창성의 허울을 쓰고 있다. 허나 수학에는 뛰어나다." "영리하다는.. 2011. 5. 2.
윤리방정식 어느 날 멀리 떨어져 살던 아들을 찾아 어머니가 상경했다. 오랜만에 만난 모자는 밤새 정다운 대화를 나누었다. 하지만 서로가 나름대로 바쁜 삶이라 이튿날 헤어져야 했다. 주인공은 힘들게 사시는 어머니를 생각해, 월세를 내려고 찾아두었던 20만원을 몰래 지갑에 넣어드렸다. 배웅을 하고 돌아와서, 지갑에서 뜻하지 않은 돈을 발견하고 놀라는 어머니의 모습을 떠올리며 흐뭇해했다. 그런데 그는 책상에 펴 놓았던 책 사이에 돈 20만원과 함께 서툰 글씨로 쓴 어머니의 편지를 발견했다. "요즘 힘들지? 방값 내는 데라도 보태거라." 독일 작가 케스트너의 소설에 나오는 이야기다. 경제학적으로 보자면 주인공이나 어머니나 모두 20만원을 받았으니, 두 사람 모두 이득도 손해도 없는 교환이었던 셈이다. 가장 확실한 수학인 .. 2011. 4. 25.
숫자도 때로는 거짓말을 한다. 1898년, 미국-스페인 전쟁 동안 미 해군은 천 명당 9명이라는 '낮은' 사망률을 내세워, 천 명당 16명이라는 당시 뉴욕시의 사망률과 비교하여 입대를 장려했다. 그러나 과연 이 발표만으로 전쟁에 참전하는 것이 갓난아이와 노인, 환자도 살고 있으며 각종 사고가 끊임없이 일어나는 뉴욕에서보다 안전하다는 것을 증명할 수 있을까? 통계는 사회나 경제 동향, 여론조사 등 방대한 데이터를 기록하는 데 유용한 수단이지만, 이를 정직하게 사용하고 내용을 정확하게 이해하지 못한다면 말장난에 불과하다. ○ 신뢰할 만한 숫자인가 : 사람들은 흔히 통계숫자에 맹목적인 믿음을 갖는다. 만약 어떤 통계에서 60달러라는 숫자가 나오면 날조된 것이라고 추측할 수도 있지만, 59.83달러라는 소수를 쓰면 의심하는 사람은 많지 않다.. 2011. 4. 25.
수학 용어의 약자는 영문자의 머리 글자에서 따왔다. 우리가 흔히 알고 있는 어떤 수 전체의 집합을 나타내는 기호는 그 집합을 대표하는 단어의 머리 글자를 따서 만든 것이다. 이를테면, 자연수 전체의 집합을 N이라 쓰는 것은 자연수를 영어로 Natural number라 하기 때문이다. 마찬가지로, 정수는 독일어의 Zahlen에서 Z를, 유리수는 몫을 나타내는 영어 Quotient에서 Q를, 실수는 Real number에서 R을, 그리고 복소수는 실수와 허수가 복합되어 나타낸다는 뜻의 Complex에서 C를 따왔다. 이렇듯 우리가 자주 사용하는 기호 중 많은 것이 단어의 머리 글자와 관계가 있다. 따라서, 자주 나오는 기호와 관련된 영문자를 같이 살펴보면 수학적 기호의 의미를 쉽게 기억할 수 있을 뿐만 아니라 수학에 대한 친근감도 가질 것이 분명하다. 아래의.. 2011. 4. 25.
99의 곱셈은 계산 필요 없음 9라는 숫자는 여러 가지 재미있는 성질이 있습니다. 예를 들면 다음 곱셈도 그 중의 하나로, 이것은 보는 바와 같이 99에 1부터 9까지의 수를 곱하는 계산식을 배열한 것입니다. 1 × 99 = 99 2 × 99 = 198 3 × 99 = 297 4 × 99 = 396 5 × 99 = 495 6 × 99 = 594 7 × 99 = 693 8 × 99 = 792 9 × 99 = 891 어떻습니까? 규칙을 찾으셨나요? ^^ 2011. 4. 25.
마법의 수 37 37이라는 수는 불가사의한 수이다. 다음을 보라. 37 × 3 = 111 37 × 6 = 222 37 × 9 = 333 37 × 12 = 444 37 × 15 = 555 37 × 18 = 666 37 × 21 = 777 37 × 24 = 888 37 × 27 = 999 2011. 4. 25.
BEAUTY OF MATH 1 x 8 + 1 = 9 12 x 8 + 2 = 98 123 x 8 + 3 = 987 1234 x 8 + 4 = 9876 12345 x 8 + 5 = 98765 123456 x 8 + 6 = 987654 1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432 123456789 x 8 + 9 = 987654321 1 x 9 + 2 = 11 12 x 9 + 3 = 111 123 x 9 + 4 = 1111 1234 x 9 + 5 = 11111 12345 x 9 + 6 = 111111 123456 x 9 + 7 = 1111111 1234567 x 9 + 8 = 11111111 12345678 x 9 + 9 = 111111111 123456789 x 9 +10= 11111.. 2011. 4. 25.
수학에 대한 분노 2011. 4. 25.
매미의 수명과 소수의 관계 매미는 가장 오래 사는 곤충으로 알려져 있다. 알에서 부화한 매미의 유충은 땅속에서 나무 뿌리의 수액을 빨아먹으며 길고 지루한 세월을 인내하다가 17년이 지나서야 비로소 매미가 되어 세상 밖으로 나온다. 그러나 애벌레로 지냈던 그 긴 세월에 비하면, 날개를 달고 밖으로 나온 매미의 삶은 허망할 정도로 짧다. 겨우 수주일 이내에 짝짓기를 하여 알을 낳고는 금방 죽어버리는 것이다. "매미의 생명 주기가 이렇게 긴 이유는 무엇인가?" 곤충 학자들은 이 질문을 놓고 깊은 고민에 빠졌다. 혹시 매미의 수명과 '소수' (17은 소수) 사이에 모종의 관계가 있는 것은 아닐까? 소수의 수명을 사는 것이 종족 보존에 무언가 유리한 조건을 만들어 주는 것일까? 매미의 긴 수명을 설명하는 그럴듯한 이론이 하나 있다. 먼 옛.. 2011. 4. 25.
우애수(친화수) 두 수 220과 284는 약수를 통해 매우 친근한 관계를 맺고 있다. 220의 진약수(자신을 제외한 약수)는 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110인데, 이것들의 합은 284이다. 또 284의 진약수는 1, 2, 4, 71, 142인데, 이것들의 합은 220이다. 서로 다른 친구를 ‘또 다른 나’라고 역설한 피타고라스는 이 두 수에서 우정의 표상을 발견했으며, 이런 수들을 ‘우애수’의 쌍이라고 불렀다. 그리고 신비로운 분위기를 풍기는 우애수의 쌍이 적힌 부적을 나눠 가진 사람 사이에는 완전한 우정이 보장된다는 미신이 생겼다. 이런 부적을 나누어 가진 한 사람이 지구의 반대편에 가있더라도, 그리고 바늘에 찔리는 정도의 가벼운 상처를 입더라도 다른 사람은 그 사실을 알게 되고.. 2011. 4. 25.
10의 거듭제곱으로 만드는 수 2011. 4. 25.
아무리 복잡한 미로도 빠져나올 수 있다. 다음은 그리스 신화에 나오는 이야기이다. “기원전 2천년 경, 크레타 섬에는 황소 몸뚱이에 사람의 머리를 가진 미노타우로스라는 괴물이 살고 있었다. 미노스 왕은 솜씨좋은 공인 다이달로스에게 부탁하여 일단 들어가면 빠져 나올 수 없도록 교묘하게 미궁을 꾸미라고 한 후, 그 괴물을 가두었다. 그리고는 해마다 7명의 소년과 소녀를 제물로 바쳤다. 이 소식을 들은 젊은 용사들은 저마다 그 괴물을 무찌르려고 했으나 아무도 그 미궁을 빠져 나오지 못하고 꽃다운 목숨만 바치고 말았다. 마침내 그 괴물은 미노스 왕의 딸, 아리아드네의 도움을 받은 그리스의 영웅 테세우스에 의해 퇴치되었다.” 그러면, 테세우스는 출구를 알 수 없는 미궁에서 어떻게 빠져 나올 수 있었을까? 테세우스는 아리아드네가 준 실뭉치의 끝을 자신의 .. 2011. 4. 25.
아인슈타인의 사랑의 방정식 아인슈타인이 물리학 강의 도중 잠깐 숨을 돌리는데 한 학생이 질문했다. "박사님은 모든 물체 사이에 작용하는 상대성 원리를 발견하였고, 또 그것을 수식화 하셨는데 그렇다면 사람들 사이에 오가는 사랑도 방정식으로 표현하실 수 있습니까?" 잠시 생각에 잠긴 아인슈타인은 칠판에 그 유명한 사랑의 방정식을 만들어 내었다. " Love = 2 □ + 2 △ + 2 ∨ + 8 < " 이 방정식의 풀이는 다음과 같다. "가지 않으면 안될 길을 마지 못해 떠나가며 못내 아쉬워 뒤돌아 보는 그 마음! 갈 수 없는 길인데도 따라가지 않을 수 없는 안타까운 마음! 그 마음이 사랑인 것이다." 2011. 4. 25.
러셀의 역리 자기 자신에 속하지 않는 모임인 전체의 모임 S를 생각해 보자. S는 어디에 속할까? 만약 S가 S에 속한다면, S의 정의에 의해 S는 S에 속하지 않아야 한다. 만약 S가 S에 속하지 않는다면, 마찬가지로 S의 정의에 의하여 S는 S에 속해야 한다. ????????? 관련글 : 2011/04/25 - [정신체조수학] - 1=2라고 하면.. 2011. 4. 25.
은행에 가서 돈을 불리자. 가까운 은행에 가서 직접 해보시길... 먼저 은행에 100만원을 예금한다. 그리고 다음과 같이 예금을 인출한다. 1 인출 40만원 잔액 60만원 2 인출 30만원 잔액 30만원 3 인출 12만원 잔액 18만원 4 인출 18만원 잔액 0원 합계 인출 100만원 잔액 108만원 아니?! 총 인출금은 100만원인데 총 잔액은 108만원이라니??? 여러분은 은행에 가서 8만원을 더 찾을 수 있을까? 2011. 4. 25.
1=2라고 하면.. 영국의 철학자이자 수학자였던 러셀이 어느 대학의 한 강연회에 갔을 때의 일이다. 러셀이 "1=2라고 하면 세상의 모든 말이 다 참이 된다." 라고 주장했을 때, 한 학생이 다음과 같은 요청을 했다. "그렇다면 당신이 로마 교황이라는 사실을 증명해 주십시오." 그러자 러셀은 즉석에서 다음과 같이 증명했다고 한다. 러셀과 로마 교황은 둘이다. 그런데 2=1이다. 그러므로 러셀과 로마 교황은 하나다. 따라서 러셀은 로마 교황이다 ..... ▶ 관련 글 : 2011/04/25 - [정신체조수학] - 러셀의 역리 2011. 4. 25.
수 1, 2, 3에 얽힌 미신 우리는 1월 1일이라면 모든 것이 다시 시작되는 날이므로 기왕이면 좋은 꿈을 꾸길 원한다. 구태여 이런 심정을 미신이라고 나무랄 필요는 없다. 그러나, 옛날 사람들은 숫자를 가지고 미래를 점칠 정도로 수의 "개성"을 지나치게 존중하였다. 이쯤 되면 미신이라고 할 수 밖에.. 이런 경향은 동서양이 모두 공통적이다. 영어에도 "There is one above.(위에 1이 있다.)"라는 말이 있는데, 이것은 모든 것의 위에 신이 계신다는 뜻이다. 이와 같이 수에 특별한 의미를 두는 것은 도가 지나치면 미신이 되는데, 유독 "모든 것은 수"라고까지 믿었던 피타고라스는 수마다 여러 가지 의미를 부여했다. 1이 선, 빛, 질서, 행복을 상징한다면, 2는 반대인 악, 어둠, 무질서, 불행 등을 나타낸다고 믿었다. .. 2011. 4. 25.
노벨 수학상은 없다. 노벨상은 스웨덴의 화학자이자 발명가였던 노벨(Alfred B. Nobel, 1833~1896)이 자신의 많은 재산을 희사하여 물리학, 화학 등 5개 부문에 걸쳐 매년 한 번씩 세계에서 가장 훌륭한 업적을 남긴 사람에게 수여하는 상이다. 그러나 아무리 열심히 해도 노벨 수학상은 탈 수 없다. 왜냐하면 노벨 수학상은 없기 때문이다. 그런데 자연과학의 기초인 수학 부문에서는 왜 노벨상이 없는 것일까? 그 이유는 당시 노벨과 같은 시대에 활동하고 있던 유명한 수학자 레플러(Mittag Leffler)와 노벨의 사이가 몹시 좋지 않아서라고 한다. 한편, 캐나다의 토론토 대학의 수학 교수였던 필즈(John Charles Fields, 1863~1932)는 수학 분야에 노벨상이 없는 것을 항상 안타깝게 여기고 수학 .. 2011. 4. 25.
세상에서 가장 신비한 수 세상에서 가장 신비한 수는 142857이라는 수이다. 평범해 보이는 이 수가 왜 그렇게 신비한 걸까? 142857에 1부터 6까지 차례로 곱해보자. 142857 × 1 = 142857 142857 × 2 = 285714 142857 × 3 = 428571 142857 × 4 = 571428 142857 × 5 = 714285 142857 × 6 = 857142 이렇게 똑같은 숫자가 자릿수만 바꿔서 나타나니 신기하다. 그러면 142857에 7을 곱하면 얼마일까? 답은 놀랍게도 999999이다. 게다가 142 + 857 = 999이고 14 + 28 + 57 = 99이다. 마지막으로 142857 을 제곱하면 얼마가 될까? 142857 을 제곱하면 20408122449라는 수가 나오는데 20408 + 12244.. 2011. 4. 25.
어느 변호사의 논리 어느 사형수가 토요일에 판사로부터 다음과 같은 선고를 받았다. "교수형은 다음 주 7일 중 어느날 오후에 집행한다. 그러나 형을 집행하는 날 아침에 그 사실을 알릴 때까지 너는 그날이 어느 날인지 모른다." 그 재판관은 약속을 잘 지키기로 소문난 사람이었다. 죄수는 변호사와 함께 감방으로 돌아왔다. 단둘이 마주 앉았을 때, 변호사는 미소를 지으면서 "판사의 판결은 실행 불가능이야." 라고 말했다. "무슨 뜻인지 저는 모르겠습니다."라고 죄수가 말하자, "그러면 설명하지. 다음 주 토요일에 형의 집행이 불가능한 것은 확실하다. 토요일은 주의 마지막 날이다. 금요일 오후까지 만일 살아있다고 가정하면 토요일에 형이 집행된다는 것을 너는 안다. 즉, 토요일 아침 형이 집행되기 전에 너는 알아버린 것이 된다. 그.. 2011. 4. 25.
나도 앞으로 유명한 사람이 될까? 숫자 9는 불가사의한 성질을 많이 가지고 있습니다. 그 중 한가지는 유명한 사람의 탄생일과 사망일에는 9가 숨어있다는 것입니다. 예를 들어 루이 16세는 1793년 1월 21일에 단두대에서 처형되었습니다. 이를 중간에 있는 글자는 빼고 차례로 숫자를 써서 나타내면 1793121이 됩니다. 이 숫자를 작은 숫자에서 큰 숫자의 순서로 차례로 쓰면 1112379가 됩니다. 큰 수 1793121에서 작은 수 1112379를 빼면 680742가 됩니다. 680742의 각 자리의 수를 더하면 6+8+0+7+4+2=27이 되고 27의 각 자리의 수를 더하면 2+7=9가 됩니다. 이런 식으로 나폴레옹의 생일, 세종대왕의 생일을 계산해보면 마지막 결과는 항상 9가 나옵니다. 여러분도 앞으로 유명한 사람이 될지 궁금하면 .. 2011. 4. 22.
우리의 명절과 피타고라스의 완전수 우리 나라에서는 1, 3, 5, 7, · · · 등 홀수를 양의 수, 2, 4, 6, 8, · · · 등 짝수를 음의 수라고 생각하였다. 양은 밝고 크고 따뜻한 것으로 생각하였고, 음은 어둡고 작고 서늘한 것으로 생각하여 양의 수가 겹치는 날을 우리 고유의 명절로 삼았다. 1월 1일 : 설날 / 3월 3일 : 삼짓날 / 5월 5일 : 단오 / 7월 7일 : 칠석 ... 수에 뜻을 부여하기는 서양에서도 마찬가지이다. "만물의 근원은 수이다."라는 말로 유명해진 피타고라스는 수 중에서도 '자신을 제외한 약수 전체의 합이 그 수 자체가 되는 수'를 '완전수'라고 하여 신성시하였다. 즉, 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14이므로 6이나 28 등은 완전수이다. 그리고 6이 최소의.. 2011. 4. 22.
계란 낙하 특수 제조한 계란이 2개 있는데, 100층 높이 빌딩의 몇 층에서 떨어뜨려야 깨지는지 알아내려 합니다. 단 2개의 계란만 사용해서 몇 층에서 깨지는지 확실하게 알아내려면 계란을 최소 몇 번 떨어뜨려 봐야 할까요? 더보기 답은 14번입니다. 1층부터 차례로 계란을 떨어뜨려 보면 몇 층에서 깨지는지 확실히 알 수 있지만, 100층까지 최대 100번을 던져봐야 합니다. 50층에서 실험한 뒤 깨지면 1층부터, 안 깨지면 51층부터 실험하면 실험 횟수를 절반으로 줄일 수 있죠. 같은 식으로 최초에 시작하는 층을 계산해 보면 14층이 가장 효율적입니다. 14층에서 깨지면 1층부터 실험합니다(최대 14회 실험). 안 깨지면 13층 위인 27층에서 다시 실험합니다. 깨지면 15층부터 26층까지 던져보고(이 경우도 최대.. 2011. 4. 22.
최대한 많은 황금을 차지할 수 있는 안 당신은 해적선 선장입니다. 황금을 어떻게 배분할지에 대한 당신의 안을 놓고 100명의 선원이 투표를 합니다. 과반의 지지를 못 얻으면 당신은 죽어요. 죽지 않으면서 최대한 많은 황금을 차지할 수 있는 안은 무엇인가요? 더보기 선원 51명과 황금을 똑같이 나눠 가지는 겁니다. 왜? 과반의 지지를 얻으려면 선원 51%를 내 편으로 만들어야 합니다. 그러려면 황금을 줘야 합니다. 그러나 분배 과정에서 불만이 있으면 안 되죠. 1표가 똑같은 가치인 만큼 황금도 똑같이 나눠야 합니다. 51명 초과의 지지는 배분 몫만 줄이므로 불필요합니다. 2011. 4. 22.