본문 바로가기

삼각함수3

삼각비의 어원과 탈레스 삼각법(trigonometry)이란 그리스어 trigon(삼각형)과 metria(측정)의 합성어이다. 이는 삼각비를 이용하여 삼각형의 변의 길이, 각의 크기 등을 계산하는 것을 뜻한다. 삼각법에 사용되는 기호 sin, cos, tan는 각각 sine, cosine, tangent의 줄임말이다. 영어 sine은 라틴어 sinus에서 온 것으로 알려져 있다. sinus의 뜻은 매우 다양해서 길의 커브, 땅의 움푹 들어간 곳, 꼬불꼬불한 길 등을 비롯하여 해안의 만(灣), 가슴 등을 뜻하기도 한다. 본래 인도의 수학자 아리아바타는 사인에 해당하는 것을 ardha-jya 또는 jya-ardha라 하고, 이 단어를 줄여서 단지 jya라고 하였다. 이후에 아랍 사람들이 jya를 음역해서 jiba라는 단어를 만들어냈.. 2023. 7. 25.
GPS와 삼각함수 위성에서 보내는 신호를 수신해 사용자의 현재 위치를 알려주는 시스템인 GPS(Global Positioning System)는 1970년대 폭격의 정확성을 높이기 위해 미국 국방성에서 최초로 개발한 것이다. 실제로는 인공위성이 알려주는 건 장소가 아니라 인공위성 자신의 위치와 현재 시간이다. GPS 수신기는 어떻게 자신의 위치를 알게 될까? GPS 수신기를 이용하여 자신의 위치를 알 수 있게 하는 원리 속에는 삼각함수의 개념이 들어가 있다. 흔히 인공위성이 자신의 위치를 GPS 수신기에 가르쳐 준다고 알고 있다. 하지만 인공위성은 각자의 위치를 가르쳐 줄 수 있는 것이 아니라 인공위성 자신의 위치와 시간을 GPS 수신기에 가르쳐 주고 있는 것이다. 정확히 GPS의 원리는 위성과의 거리를 측정하는 데 있다.. 2020. 8. 7.
푸리에 급수 1822년 프랑스의 수학자 푸리에(Fourier, J. B. J. ; 1768~1830)는 세상의 어떤 복잡한 움직임이나 운동이라도 그것이 주기적이라면 삼각함수인 사인함수와 코사인함수로 이루어진 급수로 표현할 수 있다는 사실을 발견하였다. 예를 들어 어떤 주기적인 파형이 다음 그림과 같을 때, 이것은 간단히 사인함수와 코사인함수의 합으로 나타낼 수 있다. 이는 임의의 복합 파동을 단순 파동들의 합성으로 분석할 수 있다는 것을 뜻한다. 이러한 푸리에 급수의 원리는 복잡한 것을 간단한 요소로 분해하고 그것을 재구성하는 방식이라고 볼 수 있다. 좀 더 수학적으로 나타내면, 다음과 같은 식이 성립된다. 흔히 푸리에 급수의 예로 바이올린 소리의 파동을 이야기하는 경우가 있다. 바이올린 소리의 파동은 복잡한 파형을.. 2013. 4. 30.