본문 바로가기

수학자35

7×9=? 어느 대(大) 수학자가 어린 학생들 앞에서 수학에 대해 강의를 하다가 7에다 9를 곱할 일이 생겼다. 그러나 갑자기 7×9가 생각나지 않아 학생들에게 값이 얼마냐고 물었다. 그러자 한 학생이 장난삼아 ‘61’이라고 대답하자 그는 ‘61’이라고 칠판에 적었다. 그러자 다른 학생이 놀린다고 ‘아녀요 69예요’라고 하자 그 수학자는 "답이 어떻게 두 개가 될 수 있느냐"면서 생각에 잠기더니 혼자 중얼거렸다. ‘7곱하기 10은 70이니 70보다는 작을 것이나 61과 67은 소수이니까 답이 될 수가 없고, 홀수 곱하기 홀수는 홀수이므로 62, 64, 66, 68도 아니고, 65는 5의 배수이므로 답이 아니고, 69는 너무 크므로 답이 아니고, 63만 남으니 63이 답이야’ 라면서 칠판의 숫자를 정정했다. 2014. 5. 26.
문제풀이와 증명의 통쾌함과 즐거움 ◆ '불가능함'과 '존재하지 않음'을 증명하는 데에 순수 수학은 많은 관심을 기울입니다. 예컨대 "√2는 유리수가 아니다"라는 명제가 있지요. '유리수 표현이 존재하지 않음'을 증명하는 문제인데, 이런 부정적인(negative) 결과는 어디에 써먹을 수 있는 게 아니잖아요. 현실에선 쓸모가 없지만 수학자한테는 매우 중요한 문제입니다. 사실 고대 그리스 수학에서 성취한 가장 중요한 명제를 꼽으라면 바로 이것이었습니다. 이렇게 수학에서 '불가능함', '존재하지 않음' 같은 부정적인 논증은 훨씬 더 큰 깊이를 지니고 있습니다. ◆ 증명 과정에서 수학자들은 어떤 통쾌함을 느낍니다. 무엇이 존재한다는 전제에서 출발해 결국엔 그런 전제가 모순임을 보임으로써 결국에 존재하지 않음이나 불가능성을 증명해내면, 마치 지저.. 2014. 2. 11.
수학에 관한 명언들 ◆ 수학이 너의 영혼의 눈을 뜨게 한다. - Platon ◆ 수학을 공부하는 것은 정신 체조를 하는 것이다. - Johann Heinrich Pestalozz ◆ 수학은 비판적 사고력을 키운다. - Polya ◆ 신(神)이 대충 닫은 문틈으로 우주를 보는 게 수학이다. - Albert Einstein ◆ 성공 방정식 : S = X + Y + Z (S=성공, X=말을 많이 하지말 것, Y=생활을 즐길 것, Z=한가한 시간을 가질 것) - Albert Einstein ◆ 수학은 과학의 여왕이고, 산술은 수학의 여왕이다. - Karl Friedrich Gauss ◆ 수학적 발견의 원동력은 논리적인 추론이 아니고 상상력이다. - August de Morgan ◆ 수학을 공부하지 않은 대부분 사람들에게는 믿기지 .. 2011. 5. 12.
에셔의 불가능한 도형들 1958년 펜로즈가 영국 심리학 저널에 '불가능한 대상 : 시각적 착시의 특별 형태'라는 용어를 사용하여 네델란드의 화가 에셔의 작품 "Belvedere," "Ascending and Descending"과 "Waterfall"을 소개함으로써 불가능한 도형이 세상에 널리 알려지게 되었다. 그래서 위의 불가능한 세 막대 도형은 '펜로즈의 삼각형'으로 불리고 있다. "Belvedere" 이 그림은 에셔의 1958년 작품으로 '전망대' 중 일부분이다. 어느 기둥이 앞에 있는 기둥일까? "Ascending and Descending" 이 그림은 에셔의 1960년 작품으로 '올라가기와 내려가기' 중 일부분이다. 가장 높은 부분은 어디일까? "Waterfall" 이 그림은 에셔의 1961년 작품으로 '폭포' 중 일.. 2011. 5. 11.
1=2라고 하면.. 영국의 철학자이자 수학자였던 러셀이 어느 대학의 한 강연회에 갔을 때의 일이다. 러셀이 "1=2라고 하면 세상의 모든 말이 다 참이 된다." 라고 주장했을 때, 한 학생이 다음과 같은 요청을 했다. "그렇다면 당신이 로마 교황이라는 사실을 증명해 주십시오." 그러자 러셀은 즉석에서 다음과 같이 증명했다고 한다. 러셀과 로마 교황은 둘이다. 그런데 2=1이다. 그러므로 러셀과 로마 교황은 하나다. 따라서 러셀은 로마 교황이다 ..... ▶ 관련 글 : 2011/04/25 - [정신체조수학] - 러셀의 역리 2011. 4. 25.